
The Role of the Trade Press

CW.html[5/14/2014 11:10:03 PM]

The Role of the Trade Press

in Educating the

Professional Community:

A Case Study

 by

 C. J. Date

 First written September
 1993
 Substantially revised
 May 2000

Notice Regarding Copyright from Alternative Technologies: This article is made
 available to the public on this website unedited. It contains extensive
 quotations of material published elsewhere which we believe is permissible in
 keeping with the “fair use” doctrine of copyright law. No plagiarism is
 intended by Alternative Technologies in publishing this article, nor we are
 sure, by the author. Rather, the quotations are believed to be essential to the
 understanding of the commentary and so the entirety has been reproduced as the
 author submitted it.

ABSTRACT

I was recently involved* in a series of exchanges with one of the leading IT
 industry trade publications. In what follows, I report on what happened and
 draw some conclusions from the experience.

* I.e., in 1993.

OVERVIEW

During the summer of 1993, a series of items appeared in Computerworld on
 the general topic of relational vs. object-oriented database management. The
 chronology of events was as follows.

1. First of all, at the request of Fabian Pascal (who was writing an article

 for inclusion in a forthcoming special "Object-Oriented Programming"
 feature issue of Computerworld), I wrote a short position paper entitled
 "Relational vs. Object-Oriented: Not an Either/Or Decision" (final draft
 dated March 12th, 1993). The idea was for that position paper to accompany
 Fabian's piece, thereby lending additional weight to the arguments he was

The Role of the Trade Press

CW.html[5/14/2014 11:10:03 PM]

 propounding in his own article. The intent behind my paper (as with most
 of the technical material I write) was primarily to educate: more
 specifically, to try to introduce some clear thinking into an area where
 most discussions still seemed to suffer from the "more heat than light"
 syndrome. The original draft of that paper is included in this report as
 Exhibit A.

2. Computerworld chose not to publish my paper as written, but instead

 published an edited and abbreviated version, with a different title ("A
 Fruitful Union"). While the editing -- which was done without any
 consultation with myself, I might add -- did not significantly change the
 message of the original draft, it did omit a few key points and it did
 alter the emphasis in some of what remained. (It also introduced some
 pretty slipshod writing, but let that pass.) That edited version, which
 appeared in the June 14th, 1993, issue of Computerworld, is included herein
 as Exhibit B.

3. Two weeks later (June 28th, 1993), Computerworld's technical editor Charles

 Babcock commented on the same subject in his regular Computerworld column,
 under the heading "Relational Backlash." His comments, it seemed to me,
 were definitely in the "more heat than light" category -- a fact I found
 both sad and rather annoying, given (a) my own position as stated in print,
 with supporting arguments, in his own newspaper only two weeks previously,
 and given also (b) the responsibility, as I see it, of writers in
 influential positions such as Babcock's to do their best to educate their
 readers instead of pandering to a taste (either real or perceived) for
 controversy. Babcock's article is reproduced as Exhibit C.

4. On June 29th, 1993, in response to Babcock's article, I wrote a letter to

 the editor of Computerworld, which was published in abbreviated form on
 July 12th, 1993. Exhibit D is the letter as originally written, Exhibit E
 is the version that was published.

5. The published version of the letter provoked a somewhat shrill response

 from a reader (Donald Burleson, Computerworld, August 2nd, 1993). I leave
 it to readers of this report to note how the omissions from my original
 article and from my letter enabled Burleson to make some of the comments he
 did. Burleson's letter (at least as published -- probably his original was
 edited too) is attached as Exhibit F.

6. I wrote a reply to Burleson's letter and sent it with a cover note to the

 editor of Computerworld (August 2nd, 1993). That letter was never
 published, nor even acknowledged. See Exhibit G.

7. Subsequently, another response to Babcock's column and to my July 12th

 letter was published (James Barnett, Computerworld, August 23rd, 1993).
 Comments similar to those under paragraph 5 above apply here also. See
 Exhibit H.

8. I wrote a reply to Barnett's letter and sent it with a cover note to the

 editor of Computerworld (August 24th, 1993). As with my August 2nd letter,
 that letter was neither published nor acknowledged. See Exhibit I.

THE SAGA CONTINUES

The day after I completed the first draft of this account, I opened up the
 most recent issue of Computerworld to find a follow-up column by Charles
 Babcock on the same topic, entitled "SQL vs. Objects" (see Exhibit J).
 Regrettably, though perhaps unsurprisingly, this new column also fell into the
 "more heat than light" category. In particular, it included, and commented on,
 a couple of quotes from my own article as published (i.e., as reproduced in
 Exhibit B). As might be expected, the comments were, on the whole, less than
 favorable. What's more, the first of the two passages quoted had been subtly

The Role of the Trade Press

CW.html[5/14/2014 11:10:03 PM]

 changed in the published version (I had written "implemented," but the editor
 had changed it to "implements" -- compare Exhibits A and B), and that
 apparently trivial change made it possible for Babcock to take a very cheap
 shot at my original claims.

The rest of Babcock's column contained numerous errors and misleading
 statements. Detailed discussion of those errors per se would be beyond the
 scope of the present article; however, I have to say that I find it
 extraordinary that Computerworld should refuse to publish -- and publish
 verbatim! -- the carefully considered opinions of someone who has made a
 lengthy study of the subject, and at the same time see fit to give someone like
 Babcock the space to pontificate on a topic on which he clearly displays little
 real understanding.

CONCLUSIONS

What are we to conclude from all of the foregoing? Well, I'm only too well
 aware that any claim of shabby treatment at the hands of the media tends to
 smack of special pleading, and runs the risk of making the claimant appear
 ridiculous. And I'm also well aware that, in the case under discussion, the
 letters I wrote were at least as much an attempt at self-defense as they were
 an attempt to educate; a critic might therefore argue that I'm merely suffering
 from wounded pride. But reading through the exhibits in their entirety, it's
 hard to escape the impression that (in the case at hand, at least)
 Computerworld was more interested in controversy for its own sake than it was
 in the dissemination of truly useful information. Certainly it published more
 in the way of dissenting opinion -- ill-informed, unsubstantiated, and
 incorrect opinion at that -- than it did in the way of reasoned argument or
 material that was genuinely trying to educate the readership.

I'll leave it to readers of this report to judge whether this was an
 isolated incident or the norm. For my own part, I would like to continue to
 believe that there are still some trade publications that take their
 responsibilities seriously; my criticisms are reserved specifically for those
 that behave as Computerworld did in the case at hand. Be that as it may, here
 are some of the lessons I've learned from my experience in this particular
 case:

1. Technical articles and letters intended for publication in the trade press,

 no matter how carefully argued from a technical standpoint and no matter
 how carefully written, are likely to be altered for publication by
 editorial staff who don't understand either the substance or the merits of
 the material in question (and often have a tin ear to boot).

2. Many aspects of the IT field are not well understood by the professional

 community at large, and the quality of debate is thus often not very high
 either. Evidence for both of these claims can readily be found in the case
 under discussion. This state of affairs is hardly surprising, however (and
 moreover is unlikely to change), given the apparent lack of interest on the
 part of the trade press -- or certain portions thereof, at least -- in
 trying to improve the situation.

3. I will be very wary in the future of relying on the trade press for

 enlightenment on any technical subject.

This marks the end of the body of this report. Exhibits A-J follow
 immediately.

 ----- ¨¨¨¨¨ -----

The Role of the Trade Press

CW.html[5/14/2014 11:10:03 PM]

EXHIBIT A

Original draft of "Relational vs. Object-Oriented: Not an Either/Or Decision,"
 by C. J. Date (March 12th, 1993):

Where is database technology headed? Some pundits have predicted the
 imminent demise of relational, claiming that today's relational systems are
 just too simplistic for the complex databases we need in the 1990s, and have
 jumped with both feet on to the object-oriented (OO) bandwagon. "The world is
 much too complex to be represented in flat relational tables" is a typical
 claim heard from this camp. On the other hand, relational advocates have been
 defending their position stoutly, arguing the importance of relational's solid
 theoretical foundation, and pointing out -- with some justice -- that in
 certain respects OO technology represents a giant step backward.

Well, I have some good news: We can have our cake and eat it too!
 Relational vs. OO is not an either/or decision -- despite the fact that certain
 people have a vested interest in presenting it as if it were. The fact is,
 there are two technologies out there, relational and object-oriented, and we
 should be looking for ways to marry them together, instead of throwing mud at
 each other. The advantages and benefits of relational are well known; and
 object-oriented too has many good features, such as inheritance, that are
 missing from today's relational products. (It would be wrong not to point out
 in passing that inheritance in particular was proposed for relational systems
 as far back as 1976. As so often, there is a significant gap between what the
 technology is theoretically capable of and what the products actually deliver.)

Mind you, object-oriented has some very bad features too! This is not the

 place to go into details, but such matters as data integrity, optimization,
 views, and the catalog all represent areas where the object-oriented community
 has a good deal of work to do to catch up with relational technology. (Indeed,
 the foregoing might be too charitable. There are some serious questions as to
 whether such catching up is even feasible if we discard the solid relational
 foundation, as some OO people seem to be advocating.)

So when I talk of marrying the technologies together, what I mean is that we

 should be trying to extend relational systems to incorporate the GOOD features
 of OO. Obviously, I do not want to do this at the expense of having to
 incorporate the BAD features as well. And let me stress the point also that I
 am talking about a marriage of technologies, not of products. I am not
 pretending that a clean integration between OO product X and relational product
 Y is a simple matter, or even achievable, or even necessarily a good thing.

So how are we to meet this desirable goal? Well, the fundamental construct

 in OO systems is the object class, which is (in general) a user-defined,
 encapsulated data type of arbitrary internal complexity.* Note: I use the
 term "data type" here in the sense in which that term is understood in modern
 programming languages. In particular, I take it to imply that instances of the
 data type in question can be manipulated only by certain operators whose
 definitions are also provided by the user. I am NOT referring just to
 primitive, system-defined (i.e., builtin) data types like INTEGER and CHAR.

* Note added in May 2000: This sentence is a little misleading. An object
 class is just a data type, either user- or system-defined. User-defined is the
 more general case, of course, which is why the original sentence included that
 "in general" qualifier.

The Role of the Trade Press

CW.html[5/14/2014 11:10:03 PM]

What about relational systems? Well, here the fundamental construct --
 mostly not implemented, unfortunately, in today's relational products -- is the
 domain. And a domain is (in general) a user-defined, encapsulated data type of
 arbitrary internal complexity ... In other words, a domain and an object class
 are the same thing! In my opinion, therefore, domains are the key to achieving
 our "desirable goal." A relational system that implemented domains properly
 would be able to do all the things that OO advocates claim that OO systems can
 do and relational systems cannot. Thus, criticisms of relational from OO
 advocates may well be accurate if they are taken as criticisms of today's
 products, but they are NOT accurate if they are taken as criticisms of the
 potential of the technology.

To sum up: Relational vendors should do all in their power to extend their

 systems to include proper domain support. Indeed, an argument can be made that
 the whole reason we are getting into this somewhat nonproductive debate on the
 relative merits of OO and relational is precisely because the relational
 vendors have failed so far to support the relational model adequately. But
 this fact should not be seen as an argument for abandoning relational
 entirely. It would be a great shame to walk away from the experience gained
 from over 20 years of solid relational research and development.

EXHIBIT B

Edited version of the article shown in Exhibit A as published in Computerworld
 ("A Fruitful Union," by C. J. Date, June 14th, 1993):

Where is database technology headed? Some pundits have predicted the
 imminent demise of relational databases. They claim today's relational systems
 are just too simplistic for the complex databases we need in the 1990s and have
 jumped with both feet onto the object-oriented bandwagon.

"The world is much too complex to be represented in flat relational tables"
 is a typical claim heard from this camp. On the other hand, relational
 advocates have been defending their position stoutly, arguing the importance of
 relational's solid theoretical foundation and pointing out that in certain
 respects, object-oriented technology represents a giant step backward.

Well, I have some good news: We can have our cake and eat it, too! The

 point is to marry the two technologies instead of throwing mud at each other.

When I talk of marrying the technologies, I mean we should try to extend

 relational systems to incorporate the good features of object orientation and
 shun the bad. Let me stress that I am talking about a marriage of
 technologies, not of products. I am not pretending a clean integration between
 object-oriented product X and relational product Y is a simple matter -- or
 even achievable or a good thing.

So how are we to meet this desirable goal? By looking for what the two have

 in common.

The fundamental construct in object-oriented systems is the object class,

 which is (in general) a user-defined, encapsulated data type of arbitrary
 internal complexity. (Note: I use the term data type here in the sense in
 which that term is understood in modern programming languages. In particular,
 it means only certain operators, whose definitions are provided by the users,
 can manipulate instances of the data type in question. I am not referring just
 to primitive, system-defined, built-in data types such as Integer and Char.)

In relational systems, the fundamental construct is the domain, which for

 the most part is not implemented in today's relational products. In general, a
 domain is a user-defined, encapsulated data type of arbitrary internal
 complexity -- i.e., a domain and an object class are the same.

The Role of the Trade Press

CW.html[5/14/2014 11:10:03 PM]

In my opinion, therefore, domains are the key to achieving our "desirable
 goal." A relational system that implements domains properly would be able to
 do all the things that object-oriented advocates claim that object-oriented
 systems can do and relational systems cannot. Thus, criticisms of relational
 from object-oriented advocates may well be accurate if they are taken as
 criticisms of today's products; however, they are not accurate if they are
 taken as criticisms of the potential of the technology.

Relational vendors should do everything in their power to extend their

 systems to include proper domain support. Indeed, you can make an argument
 that the whole reason we are getting into this debate on the relative merits of
 object-oriented and relational is precisely because the relational vendors have
 failed so far to support the relational model adequately. But this fact
 shouldn't be an argument for abandoning relational entirely. It would be a
 great shame to walk away from the experience gained from more than 20 years of
 solid relational research and development.

EXHIBIT C

Charles Babcock's Commentary column from Computerworld ("Relational Backlash,"
 June 28th, 1993):

“You know that what used to be the younger generation isn't so young any
 more when its leaders start taking shots at the talent coming up behind them.
 That's what's happening now with some of the proponents of relational databases
 as they train their sights on object database management systems (ODBMS).

“This is strange because at one time, the hoary guardians of hierarchical
 and Codasyl systems said the same sort of things about relational. John
 Cullinane, president of the late Cullinet Software, used to tell me, "IBM may
 ship a lot of copies of DB2 but they're all sitting on the customers'
 shelves." Right. Cullinet was acquired by Computer Associates about a year
 later.

“Once again, you can hear the volume of disparaging comments beginning to

 pick up: "You don't need object-oriented systems. Relational can do
 everything they can do ... You can store unstructured data in relational tables
 ... Object-oriented results in a loss of data independence, not a gain." And
 so on.

“It is hard for relational advocates, having been on the leading edge for 10

 to 12 years, to wake up and find that fashionable opinion has moved on to
 something else. The temptation is to tell the upstarts they don't know what
 they're talking about.

“At their worst, the relational defenders say ODBMSs represent a step

 backward. ODBMSs resemble the old Codasyl databases with their dependence on
 pointers to locate stored objects, but it is hard to see this as a vice if the
 systems then manage objects effectively.

“Object databases answered a real need for C++ and Smalltalk programmers who

 needed a place to store their persistent data. CAD and CAE users in particular
 sought to store objects, and object-oriented databases sprang up to serve that
 purpose.

“Whatever their deficiencies, ODBMSs succeed in dealing with objects as

 objects. They do not need to break them down or flatten them as relational
 systems do. There are a variety of methods used, but the chief one is to
 assign each object its own identifier and then use that identifier to locate
 the object intact.

“The nature of this system gives object databases a claim to speedier

The Role of the Trade Press

CW.html[5/14/2014 11:10:03 PM]

 retrieval because there is no mathematical basis on which to do more
 sophisticated operations such as joins. Clearly relational systems would
 retain advantages in dealing with massive amounts of tabular data. But
 relational advocates are reluctant to give object databases their due.

“ODBMSs are built as object-handling systems capable of preserving the

 characteristics of the objects they store -- classes, inheritance and
 messaging.

“Because objects are a combination of data, processes and messages, it is

 difficult to restrict them to a few simple data types. To store an object,
 "you have to have the processes inside the database as well as the data," notes
 James Odell, chief methodologist at Inference Corp. and co-author with James
 Martin of Principles of Object-Oriented Analysis and Design.

“Relational systems can store objects, but to do so, they must break them

 down into components and store them in tables. In an analogy that originated
 with Esther Dyson, editor of the newsletter "Release 1.0," this is like driving
 your car home and then disassembling it to put it in the garage. It can always
 be reassembled again in the morning, but one eventually asks whether this is
 the most efficient way to park a car.

“Relational systems were designed to deal with a few data types within the

 confines of a strict logic. Object databases were designed to deal with the
 rich variety of data types in a few limited ways. Relational advocates can't
 wave a magic wand and make the difference go away.”

EXHIBIT D

There were many, many statements in Babcock's column that I would have liked to
 refute or at least comment on, but in my letter to Computerworld I concentrated
 on what seemed to me to be the most important points. The original (June 29th,
 1993) draft of that letter follows:

Well, I guess I'm a "hoary guardian" of relational technology ... I refer to
 Charles Babcock's column "Relational Backlash" [CW, June 28]. But the analogy
 of disassembling your car to park it and reassembling it in the morning is just
 as hoary -- and what's more, it's WRONG. Relational technology does not
 necessarily require complex objects to be broken down into components to be
 stored in the database (see my article "A Fruitful Union" [CW, June 14]). Let
 me repeat the point: A relational system that supported domains properly would
 be able to all the things that OO systems can do. Moreover, it would still be
 a relational system and would enjoy all the usual relational advantages.

Also, the implication of Babcock's column that "OO is to relational as
 relational was to CODASYL" (paraphrased) is completely false and very
 misleading. Relational displaced CODASYL because it had a solid theoretical
 foundation and CODASYL did not -- and that foundation led in turn to solid
 practical benefits. OO does not have a comparable foundation. And yes,
 relational defenders do say that OO represents a step backward -- in some ways
 (e.g., the CODASYL flavor), though not in others (e.g., inheritance).

To paraphrase Babcock again: Relational technology was designed to deal

 with arbitrary data types (not "a few" data types) within the confines of a
 strict logic (this latter part is correct). What we want is for current
 relational systems to be extended to include the good features -- but not the
 bad features! -- of OO technology. OO advocates cannot wave a magic wand and
 make the bad features go away.

EXHIBIT E

This is the letter from Exhibit D as it actually appeared in print ("Reader

The Role of the Trade Press

CW.html[5/14/2014 11:10:03 PM]

 Backlash," by C. J. Date, July 12th, 1993):

Well, I guess I'm a "hoary guardian" of relational technology, according to
 Charles Babcock's column "Relational backlash" [CW, June 28]. But the analogy
 of disassembling your car to park it and reassembling it in the morning is just
 as hoary -- and what's more, it's wrong.

Relational technology does not necessarily require complex objects to be
 broken down into components to be stored in the database (see my article "A
 Fruitful Union," CW, June 14). A relational system that supported domains
 properly would be able to all the things that object-oriented systems can do.
 Moreover, it would still be a relational system and would enjoy all the usual
 relational advantages.

Also, the implication of Babcock's column that "object orientation is to

 relational as relational was to Codasyl" is completely false. Relational
 displaced Codasyl because it had a solid theoretical foundation and Codasyl did
 not -- and that foundation led in turn to solid practical benefits. Object
 orientation does not have a comparable foundation.

EXHIBIT F

Letter in Computerworld from Donald Burleson, Rochester, NY ("Relational Redux
 [sic]," August 2nd, 1993):

I was very surprised to see C. J. Date's naive response to Charles Babcock's
 "Relational backlash" [Letters to the editor, CW, July 12].

Mr. Babcock's analogy about disassembling a car every time it is driven is
 an excellent example of the overhead that relational systems impose on the
 computer industry. Relational databases have never been known as high-speed
 engines, and atomic data items that are shared by many logical objects do
 indeed require overhead.

It is ludicrous for Date to imply that proper "domain" support within a

 relational database would allow a relational database to do all the things an
 object-oriented database can do. I have yet to see any relational database
 that can fully support polymorphism or multiple inheritance. Most important,
 it is very difficult to "shoehorn" a relational database to support the
 encapsulation of behaviors.

Contrary to Date's assertion about the similarity of Codasyl [Conference of

 Data Systems Languages] to object technology, it is very clear he missed the
 point. Both models use pointers to link data items together, thereby reducing
 the overhead of reassembling the objects.

Object-oriented databases also share the concept of "currency" with Codasyl

 databases. Currency allows users to see where they are in the database, and
 the failure of the relational model to support currency is a major drawback.

Finally, Date alleges that the relational model is built on a sound

 theoretical foundation. Anyone who has read E. F. Codd's criteria for
 relational databases knows that attempts to apply mathematical rigor to the
 relational model fall apart in practice.

Relational databases sacrifice performance to remain flexible, and object

 technology databases sacrifice flexibility to gain performance. Much of this
 argument reminds me of the Codasyl bashing that was going on when the first
 commercial relational databases were introduced.

EXHIBIT G

The Role of the Trade Press

CW.html[5/14/2014 11:10:03 PM]

Cover note to my letter to the editor of Computerworld replying to Burleson's
 letter (August 2nd, 1993):

The attached is submitted for publication in the Computerworld "letters to
 the editor" column. It is a reply to some comments on a previous letter.
 Since portions of my original letter were omitted from the published version
 and those omissions distorted my message somewhat, I would appreciate your
 publishing this reply in its entirety. Thank you.

The letter itself (which was not published) ran as follows:

It was with some reluctance that I ventured to comment (Letters to the
 Editor, CW July 12th) on Charles Babcock's "Relational Backlash" column of June
 28th, since I strongly suspected that anything I said would be misunderstood.
 And I was right. Now, I certainly don't want to get into a lengthy debate in
 your columns, but Donald Burleson's letter (CW August 2nd) demands a response.

1. First of all, I don't think it's appropriate to characterize someone's

 opinions as "naive" or "ludicrous" when you manifestly either don't
 understand them and/or haven't bothered to read them properly.

2. I stand by my claim that a relational DBMS with proper domain support would

 be able to do all the (good) things an OODBMS can do. Burleson's remark
 that he has "yet to see any relational [DBMS] that can fully support
 polymorphism" in no way invalidates that claim, and betrays a lack of clear
 thinking. Ditto for the remarks about "disassembling a car every time it
 is driven."

3. I did not assert that CODASYL and OO technology were similar; I asserted

 that the suggestion that OO would replace relational just as relational
 replaced CODASYL was false.

4. The claim that relational DBMSs "sacrifice performance to remain flexible"

 is a hoary old canard. See, e.g., Tandem's NonStop SQL, Teradata's
 DBC/1012, etc., for some commercial counterexamples.

5. "Attempts to apply mathematical rigor to the relational model fall apart in

 practice"? Does Mr. Burleson really mean what he seems to be saying here?
 If so, I don't think he knows what the relational model is.

EXHIBIT H

Letter in Computerworld from James R. Barnett, Deerfield, Ill. ("OOP
 Objections," August 23rd, 1993):

“After reading Charles Babcock's article "Relational backlash" [CW, June 28]
 and C. J. Date's previous article "A fruitful union" [CW, June 14], about the
 merits of object vs. relational DBMS, it is my opinion that neither Mr. Date
 nor Mr. Babcock is completely correct.

“The bottom line is not whether one technology is better, but which
 technology best supports the requirements of the system being developed.

“I do agree with Mr. Date's statement that "relational vendors should do

 everything within their power to include proper domain support." However, his
 assertion that this would allow relational systems to do everything object-
oriented DBMSs are capable of just isn't true. A domain and an object class are
 not the same!

“True domain support would still not allow the complex data types found in

 object-oriented systems. It would also not provide a mechanism for defining
 the valid methods for an object class. It would also not support object class
 hierarchies, which are the foundation of an object-oriented approach.

The Role of the Trade Press

CW.html[5/14/2014 11:10:03 PM]

“Mr. Date's suggestion that relational is the better technology because it

 has a solid theoretical foundation and object oriented does not is a valid
 point. Object oriented may not have the same mathematical foundation; however,
 it's a more natural representation of the way people think and organize objects
 in the real world.”

EXHIBIT I

Cover note to my letter to the editor of Computerworld replying to Barnett's
 letter (August 24th, 1993):

You saw fit not to print my recent letter responding to some remarks made by
 Donald Burleson (CW August 2nd) criticizing -- in a most ill-informed and ad
 hominem way -- my short article "A Fruitful Union" (CW June 14th). Please
 restore my faith in Computerworld's commitment to the dissemination of
 accurate, timely, and relevant technical commentary by publishing the attached
 letter in its entirety. Thank you.

The letter itself (which was not published) ran as follows:

With reference to the letter from James Barnett (Letters to the Editor, CW
 August 23rd): A domain and an object class are the same. True domain support
 would allow "the complex data types found in object-oriented systems." It
 would provide "a mechanism for defining the valid methods for an object
 class." It would support "object class hierarchies."

It is unfortunate that so few people seem to understand these simple facts.
 It is not however unexpected, given the low quality of much of the public
 debate in this area. Mr. Barnett's letter does nothing to improve the quality
 of that debate.

EXHIBIT J

Charles Babcock's Meta View column from Computerworld ("SQL vs. Objects,"
 September 6th, 1993):

“Object-oriented systems are gaining ground in some progressive IS shops,
 but their use is hampered by the fact that business data residing in relational
 database systems is not easily available to them. RDBMSs do not support the
 manipulation of objects, which means the data must be kept in two places or
 clumsily transferred in and out of the relational systems.

“For several years, relational vendors have been saying not to worry, object
 support is just around the corner. But as you listen to some relational
 authorities, their responses on this question start to sound suspicious.
 Instead of getting a time frame for object support, one tends to get a put-down
 of the young object-oriented DBMSs.

“In the June 14 issue of Computerworld, expert [sic] C. J. Date stated, "A

 relational system that implements domains properly would be able to do all the
 things that object-oriented advocates claim object-oriented systems can do ...
 ." This statement may be true as far as it goes, but it begs a very simple
 question: Which relational systems implement domains properly? The answer is,
 "none using SQL," which covers all the relational systems in commercial use.

“Date carried the argument a step further in a July 12 letter to the editor

 when he said: "Relational technology does not necessarily require complex
 objects to be broken down into components to be stored in the database."

“No, theories about the relational model don't require it, but SQL does.

 Which do you suppose database programmers are building their new systems with?

The Role of the Trade Press

CW.html[5/14/2014 11:10:03 PM]

“Let's take a look at the SQL problem. In its initial implementation, SQL

 supported a handful of simple data types on which it could carry out its
 SELECT, JOIN and other operations. When the standard was expanded by the ANSI
 X3H2 committee in 1992, more complex data types were added, such as date/time,
 which could be made up of several pieces of data, all stored in a single
 field. But date/time is still a far cry from the unpredictable, user-defined
 mix of data types found in objects.

“The closest relational systems get to dealing with objects is the binary

 large object, also known as a Blob, which sort of sounds like the real thing
 but is actually a baby step in the right direction. Blobs tend to be images,
 long text strings, video or voice stored as a uniform data type in a kind of
 "binary bucket," in the words of Fred Carter, chief architect at Ingres.

“Storing and retrieving Blobs is not the same thing as full-fledged support

 of object-class libraries. The database management system can do little with a
 Blob except put it away and retrieve it. It usually takes an application to
 seize the data and reconstruct it into an image, etc.

“This limitation will give way as the ANSI X3H2 committee adds object

 support to the next version of SQL. SQL III may be published in 1995, "but
 more likely in 1996,"* says Jim Melton, a Digital database architect who serves
 as editor for the committee.”

* Note added in May 2000: In fact it was 1999, and late 1999 at that -- and it
 would have been much later still, if the decision to publish had been based on
 technical considerations rather than political ones. From a technical point of
 view, SQL:1999 was, and still is, very seriously flawed. (This is not just my
 own opinion. Indeed, the SQL committee was already working on a major
 Technical Corrigendum at the very time the standard was being ratified! That
 Corrigendum has yet to appear, so whether it will address any of the really
 fundamental problems is unknown; my own guess is that it probably won't.)

“Oracle is playing an active role before X3H2 and is committed to including
 object support in Oracle8. Company spokesmen estimate Oracle8 will be
 available in early 1995. Informix, a pioneer in the field, also won't wait for
 the standard to be published before it adds object management features.

“But all of this remains somewhat up in the stratosphere. No one knows for

 sure when any vendor will have object support or how extensive that support
 will be. And the ANSI committee must act if support is to be uniform. ANSI
 panels have been known to fall behind their timetables on less complicated
 matters than this.

“To my mind, the interest in object-oriented programming has caught the

 relational vendors somewhat unawares. Their systems cannot be replaced willy-
nilly by object-oriented database systems, and I do not know of any users
 contemplating doing so. But then again, some users will have to wait two to
 three years before an ingredient they need is added to their systems.”

 ----- ¨¨¨¨¨ -----

POSTSCRIPT

To say it again, the exchanges described above took place in 1993, but I
 believe the overall message is just as relevant now as it was then. Note in

The Role of the Trade Press

CW.html[5/14/2014 11:10:03 PM]

 particular that -- as I hope you will agree -- subsequent events in the IT
 field have tended to support the point of view I was trying to express in the
 article I originally wrote (Exhibit A). To summarize the current situation:

· Pure object-oriented DBMSs are now mostly seen for what they really were
 all along: viz., as "DBMSs" that are specific to some particular
 application area, not general-purpose ones (and thus not true DBMSs, as
 that term is usually understood in the IT community, at all). As such,
 they might have a useful role to play in certain circumstances, but -- to
 repeat -- thay aren't true general-purpose DBMSs, and they represent
 something of a niche market. Certainly they'll never replace relational
 DBMSs.

· By contrast, "object/relational" DBMSs are true general-purpose DBMSs that

 do provide both relational and object capabilities. As I was saying all
 along, we really can have our cake and eat it too! And as Hugh Darwen and
 I have written elsewhere,* the idea of integrating relational and object
 technologies in such a manner is not just another fad, soon to be replaced
 by some other briefly fashionable idea. Au contraire, we believe an
 object/relational system is in everyone's future.

* C. J. Date and Hugh Darwen: Foundation for Future Database Systems: The Third
 Manifesto (2nd edition). Reading, Mass.: Addison-Wesley (2000).

· Of course, I feel bound to add that (to quote from that same book by Hugh
 Darwen and myself again), a true "object/relational" DBMS would be nothing
 more nor less than a true relational DBMS -- which is to say, a DBMS that
 supports the relational model, with all that such support entails (in
 particular, it entails proper domain support). The trouble is, the term
 "relational DBMS" has effectively been usurped by systems that are SQL
 DBMSs merely, so we need a new term ... Hence the "object/relational"
 terminology.

· Finally, it does need to be said that, unfortunately, the vendors are (once

 again) getting it wrong! I refer to the fact that every object/relational
 product on the market -- at least, every one I'm aware of -- is committing
 at least one of The Two Great Blunders. For details, I refer you once
 again to the book by Hugh Darwen and myself already mentioned a couple of
 times above; here I just want to raise the question: Why are the vendors
 getting it wrong? The answer, it seems to me, is because the relational
 model is so widely misunderstood. Why is it so widely misunderstood?
 Because of the lack of good education. Why is that good education lacking?
 ... Now go back to the beginning of this report (starting with the title!)
 and read it all over again.

 *** End *** End *** End ***

